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A diffusion model is proposed for the theoretical investigation of how diffusiva 
heat and mass transfer affects the energetics of the plasma-chemical process in 
highly spatially inhomogeneous discharge systems. 

The type of plasma-chemical systems customarily used most extensively to carry out en- 
doergic chemical reactions is that of discharges with a thermal plasma [i]. Products ~re 
obtained in such reactions according to a comparatively simple scheme: thermal heatin~- 
nonadiabatic cooling (quenching). In the analysis of such systems the minimum energy ,~x- 
penditure for obtaining a unit product is assumed not to depend on the heat and mass exchange 
and can be determined by the conventional method of thermodynamic calculation [2]. As was 
shown in [3], however, when sufficiently large external forces act on a system the flu:~ of 
product from the reaction zone can increase relative to the flux of thermal and chemical en- 
ergy (the transfer of energy and material becomes a selective process), which means a ~:educ- 
tion of the minimum energy expenditure. Such a situation, as will be shown below, is also 
characteristic of highly spatially inhomogeneous systems in which the removal of heat and 
products from the reaction zone is determined by molecular diffusion in this paper we study 
the effect of the selectivity of the transfer process on the energy efficiency of chemical 
processes in highly spatially inhomogeneous systems. 

Our analysis of how the selective nature of the heat and mass transfer, owing to the 
difference in the diffusion coefficients, affects the energetics of the chemical reactions 
will be conducted within the framework of the following model: the temperature distribution 
in the discharge region is uniform; the starting materials are delivered into the reaction 
zone and products are removed by diffusion; the temperature and concentration of the products 
at the periphery are kept constant at T r and O, respectively. The energy expenditure for ob- 
taining the product within this model is determined by the ratio of the total enthalpy flux 
q out of the reaction zone to the product flux Jn" 

N 

A~J- --~' (i) 

here h is the thermal conductivity coefficient of the gas mixture, Ji = miniVi is the mass 
flux of the i-th component, (mi, ni, and Vi, respectively, are the molecular mass, concen- 
tration, and rate of diffusion of the i-th component), and I i is the enthalpy (with all~w- 
ance for the enthalpy of formation) per unit mass of the i-th component. As is seen from 
Eq. (i), energy is removed from the reaction zone by means of ordinary thermal conductivity 
and diffusive transfer of chemical and thermal energy by each component. 

The transfer equations take on the comparatively simple form [3] 

q = - - - P D V I ,  j~ . . . . .  pDvY~ (2) 

upon satisfaction of the following conditions:* 1) that the diffusion coefficients for all 
the components be equal, Dij = D; 2) that thermal diffusion does not occur, Di T = 0; and 3) 

*We note that in the case of turbulent exchange these conditions are satisfied antomatic.ally. 
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that the Lewis number Le = X/pcpD be equal to unity (p is the density cv----E Y~-- 
�9 O T  

i s  the  hea t  c a p a c i t y  of  the  mix ture  and Yi = Pi /P  i s  the  mass f r a c t i o n  of  the  i - t h  compon- 
e n t ) .  The minimum p o s s i b l e  energy  e x p e n d i t u r e  i s  de te rmined  in t h i s  case  by the  equa t i on  
[31 

Ao= I(T z ) - l ( T  ~) ' ( 3 )  

N 

where l = ~ I~Y~ i s  t he  t o t a l  e n t h a l p y  per  u n i t  mass of  mix tu re ,  T ~ and T r a re  the  tempera-  
i=1  

tures in the heating region and at the periphery and Yn s is mass fraction of product in the 
reaction zone, which is determined only by the heating temperature T s and the pressure in 
the system. We note that the minimum energy expenditure does not depend on the transfer co- 
efficients [because of the similarity of the fluxes of the total enthalpy and products (2)] 
and is equal to the value calculated by the thermodynamic method [2]. 

Since in real discharge systems the conditions given above are not satisfied, in gen- 
eral, the resulting situation is one in which the composition in the reaction zone and the 
limiting energy expenditure begins to depend explicitly on the relations between the trans- 
fer coefficients. This dependence is due mainly to the following factors. 

i. The thermal diffusivity coefficient <-/(XCp of the mixture differs from the binary 
diffusion coefficients of the reagents (which determine the transfer of the material and as 
a rule have a value higher than K) creates conditions under which the product flux from the 
reaction zone can substantially exceed the heat flux. 

II. Due to the different binary diffusion coefficients of the reagents the reaction 
zone is slowly enriched with diffusing components; this accelerates the entire mass trans- 
fer but has virtually no effect on the heat flux. 

III. The difference in the binary diffusion coefficients can also cause a change in 
the relations between the reagent fluxes and, hence, a change in the amount of chemical en- 
ergy removed from the reaction zone per molecule of product. 

As a result of these effects, both the thermal energy and the chemical energy per unit 
of procut carried out depend essentially on the heat and mass transfer coefficients. 

Let us now analyze the importance of these effects in greater detail. First let us de- 
termine the dependence of the minimimum energy expenditure on the relation between the 
thermal diffusivity coefficient and the binary diffusion coefficients. For this purpose we 
consider a chemical process in which all reagents have identical binary diffusion coeffic- 
ients Dij = D, 1 x j and, generally speaking, different self-diffusion coefficients (which, 
in the general case, means ~ ~ D). When this is taken into account, the transfer equations 
in the one-dimensional stationary case become 

0 
]x=--PD Ox gi, (4)  

0 0 q=- -Z  T--pD ~ I~ Ox ~ Y~" (5) 

I t  i s  conven ien t  to  r e w r i t e  the  l a s t  e q u a t i o n  as 

q=--pD oxO I--9DcD( 1 -  D• ) ( - -  OxO T) " (6) 

The second term on the right side of Eq. (6) is a correction to the total enthalpy flux for 
the difference between the thermal diffusivity coefficient K and the mass transfer coeffic- 
ient D. Within the framework of the diffusion model under consideration the equations of 
the conservation of energy and continuity of the fluxes of the chemical components take on 
the form 

Ox" pD l -- pDop 1-- D -~x T , (7) 

O= 0 [ 0 ] 
Ox pD ~ x  Yi ~-micoi, (8) 
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where w i is the chemical reaction rate, calculated for the i-th component. Since, as is 
seen from (4), all the products are transported in the same way and the concentration of 
reagents in the reaction zone is constrained by the condition of chemical equilibrium, the 
composition in the discharge zone does not depend on the transfer coefficient. When this is 
taken into account, the boundary conditions for the total enthalpy and the reagent concen- 
trations become l[x=l=I(T), I[x=r=I(Tr), Y~lx=l=Yi(T 9, Yn[~=r=O. In order to calculate the 
maximum flux of product from the reaction zone the chemical-reaction term should be set equal 
to zero in the region of high temperature gradients and reagent concentrations. In this case 
integration of Eqs. (7) and (8) over x gives 

( dx i~ 
L = ~,, ,  ( 9 )  

/ 9 D I 

r T f 

q j" cpdr. ( 10 ) 
l T r 

The r a t i o  o f  t h e s e  e x p r e s s i o n s  d e t e r m i n e s  t h e  minimum p o s s i b l e  e n e r g y  e x p e n d i t u r e ,  
T I  

I C cv{1--  x dT 
A = & [ 1 -  o ,  1 (11) 

I ( r  z) - -  I (T r) J ' 
t 

Compar ison  o f  Eqs.  (11)  and (13)  shows t h a t  t h e  minimum e n e r g y  e x p e n d i t u r e  f o r  a g i v e n  
c h e m i c a l  p r o c e s s ,  o b t a i n e d  by t h e  modynamie c a l c u l a t i o n ,  d i f f e r s  f rom t h e  l i m i t i n g  ene~:gy 
expenditure taking into account the selectivity of the transfer processes by a correct:ve 
term, which is proportional to the relative deviation of the thermal diffusivity coeff:mient 
from the mass transfer coefficient. As follows from the calculation above, this is because 
in the case K < D (K > D) more (less) heat per molecule of product will be removed than in 
the reaction zone. Equation (ii) can be put into analytical form (by substituting the gen- 
eral expression for K [4] and then integrating), but is rather complicated and cumbersome in 
the general case. The simplest case is obtained for chemical processes in which the rela- 

X~ l : -X1 
t i o n  -62-~- - -D- -  (Xi=ni/n i s  t h e  mola r  component  o f  t h e  i - t h  componen t )  i s  s a t i s f i e d  in  t h e  

r e a c t i o n  zone  f o r  one o f  t h e  components  (we l a b e l  i t  w i t h  i = 1 ) .  In  t h i s  c a s e  t h e  t h e r m a l  
conductivity of the mixture is in fact determined by the first component and Eq. (ii) takes 
on the form 

T l 

f cpd7" 
A = A0 [ 1 - -  D - -  D u ;r ] (12)  

V I (Tt ) - - I (T  ~) ] 

Thus, as is seen from Eqs. (ii) and (12), the difference between the thermal diffusivity co- 
efficient and the binary diffusion coefficients causes a change in the relation between the 
product flux and the heat flux and, hence, reduces the energy expenditure involved in use- 
less heating of the reagents by a factor of D/~. 

These expressions permit, e.g., a fairly accurate calculation of the effect that tle 
selectivity of the transfer processes have on the energetics of the chemical process M 2 ~ 2M. 
The transfer of material here is determined by one coefficient D M M, while the heat trans- 

mainly by the thermal conductivity Mi(~ ~ DMi,M~)~ The minimum energy ex- fer is determined 
penditure in this case will be determined by 

Tl 

~ cvdT 
A=Ao[1  - DM~'M-DM~,M, rr ] (13)  

DM=,M I (TI)-- I (T r) " 

Calculation from Eq. (13) for the process O 2 ~ 2 0 ,  N i ~ 2 N ,  H2~-2H showed that t h e  values (,f 
the minimum energy expenditure in the case of diffusive transfer processes decrease from 
6.6, 12.6, and 6.2 eV to 5.8, 12o35, and 5.75 eV, respectively (p = 0.1 torr). 

Let us now determine the dependence of the limiting energy expenditure when the binary 
diffusion coefficients of the reagents differ. It is convenient to distinguish two cases 
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here. In the first case, in order to eliminate the effect due to a change in the relations 
between the reagent fluxes, we consider a chemical process in which only one dissociation 

N 

reaction A~ viAi occurs, forming a useful product A i (as can be easily shown, the fluxes 
i=I 

of the resulting substances A i are related by the stoichiometric ratio and, therefore, the 
amount of chemical energy removed per molecule of A i does not depend on the transfer coef- 
ficients). We assume that, generally speaking, the reagents have different binary diffusion 
coefficients. The transfer equations in the one-dimensional stationary case with only small 
degrees of decomposition of the initial substance A ~ take on the form 

0 N 
I,----pD~o-~x Y,, i =  1, N, i o = - - ~  1~, (14) 

i=I 

N 0 q=--k--T + %~ ;j=. 
Ox (15) 

c~=O 

Since the fluxes of products A i and A h are related by the stoichiometric ratio 

/...__~, = i__L, ~, k = l, N, 16) 
vimg Vhmh 

inclusion of (14)  gives 

D~o O Dho O Y~ -- Y> 17 ) 
tni~ i Ox m;~.v h Ox 

Integrating the last equation over x from r to x, we find the relation between the molar con- 
centrations of the products 

D~o X----L = D,~o Xl___!.~ (18)  
~r Yk 

E q u a t i o n  (18)  was o b t a i n e d  w i t h o u t  any a s s u m p t i o n s  as  t o  t h e  r e l a t i o n  be tween  t h e  d i f f u s i o n  
r a t e  and t h e  c h e m i c a l  r e a c t i o n  r a t e  and i s  t h u s  v a l i d  f o r  any p o i n t  o f  t h e  sy s t em  ( i n c l u d i n g  
t h e  r e a c t i o n  zone )  f o r  any d e g r e e  o f  s p a t i a l  i n h o m o g e n e i t y  ( t h e  s o l e  c o n d i t i o n  h e r e  i s  t h a t  
t h e  t r a n s f e r  p r o c e s s e s  be d i f f u s i v e ) .  S i n c e  t h e  c o n c e n t r a t i o n s  o f  t h e  p r o d u c t s  and t h e  i n i -  
t i a l  substance in the reaction zone are related by the equation of chemical equilibrium 

N 

[[ (xbv  N 
K ( T  l) = i=l ~V n f - l ,  f = ~ vi, (19) 

we can use Eq. 

i=1 

(18) to find the changed composition 

N vh/f 
l y(0) r%o 

h = l  

(20) 

where Xi(~ is the thermodynamic concentration of product A i at temperature T s From (20) 
we see that the ratio of XiE and Xi(~ does not depend on the temperature in the reaction 
zone and is a function of only the relations of the binary diffusion coefficients. In par- 
ticular, Xi s = Xi(~ at Dl0 = D. We can easily ascertain that the concentration of the rap- 
idly diffusing component decreases and that of the slowly diffusing component increases. 
Since during the diffusion the product flux can only decrease (because of the endoergic na- 
ture of the chemical process), in a calculation of the maximum product flux and the minimum 
energy expenditure the chemical-reaction term must be set equal to zero in the region of 
large concentration and temperature gradients. Then, after integrating (14) and (15) and 
taking (20) and < -~ D00 into account, we can easily obtain an expression for the limiting 
energy expenditure 

Tl 

~ cpdT 

D i (U) ._  i(7,r) , (21) 

~7 

where L ) ~  [ I  ( Dio)vd~" 
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0 

0-3 

] 2" 3' eV/mole 
Limiting energy expenditure A as Fig. i. 

a function of the specific energy input E. 
Calculation i) ideal quenching [7]; 2) with 
allowance for the selectivity of the 
transfer processes, owing to the difference 
in the diffusion coefficients. Experiment 
3) in the presence of a centrifugal field 
[7] 

The form of Eq. (21) is analogous to that of (11)-(13). The only difference, but a very 
important one, is that we have an effective coefficient D here instead of a single binary 
diffusion coefficient. This coefficient is obtained by solving the self-consistent problem 
and makes allowance for both the rate at which each product is removed and the change in the 
reaction zone as a result of the difference in the mass transfer coefficients. Since ])i0 > 
D00 as a rule, a situation arises in which the product flux from the reaction zone exc({eds 
the heat flux and, consequentlyz the energy expenditure for useless heating of the gas mix- 
ture is reduced by a factor of D/D00. 

Equation (21) makes it possible to calculate the minimum energy expenditure 
fairly accurately with allowance for the selectivity of the transfer processes during thermal 
decomposition of hydrogen sulfide, H2S. Since in this case the concentration of radical is 
low over a wide temperature range [5], we can consider the gas mixture as a three-component 
mixture (H2S , H2, $2) with the following relations between the diffusion coefficients 
Ds~.H2s--~Dn~s,H~S, DH2,H~s~--D}~,s~--S,SD~s,H~s . The heat flux is then determined mainly by t~e 
thermal conductivity of H2S and $2, while the relatively large H 2 transfer coefficient re- 
sults in the acceleration of the entire mass transfer. Calculation of Eq. (21) for the given 
chemical process (the energy input is considered below) is shown in Fig. i, from which we 
see that the effect described here reduces the minimum possible energy expenditure from 1.8 
to 1.3 eV. 

The effects considered above allow the minimum energy expenditure to be decreased be- 
cause of a relative reduction of the heat flux in comparison with the product flux. When 
the binary diffusion coefficients differ and several reactions occur in the system, however, 
there can be an effect due to the change in the relations between reagent fluxes, as a re- 
sult of which the amount of chemical energy removed per product molecule also changes. For 
simplicity of calculation of this effect we consider a chemical process in which two inie- 
pendent dissociation reactions 

N M 
A ~  ~ ~i~, B ~ ~ ~ ~B~ 

o c c u r ,  u s e f u l  p r o d u c t  A x b e i n g  f o r m e d  i n  t h e  f i r s t  r e a c t i o n .  S u p p o s e  t h a t  t h e  s e l f - d i f f u s i o n  
c o e f f i c i e n t s  o f  t h e  i n i t i a l  s u b s t a n c e s  and  t h e i r  b i n a r y  d i f f u s i o n  c o e f f i c i e n t  a r e  e q u a l  t o  
each other (DA~,Ao--DAoBo=DB~BJ and that the binary diffusion coefficients of the products of 
the first and second reactions satisfy the conditions DA~,A0=DA~,s0=D~0, DS~,A0 ~DBa,B0:=D~0. 
Then for low degrees of decomposition the transfer equations become 
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N 
0 

ii =- -9Dio-~x  Y~, i =  ],, "[q, IAo---- - - ~  ]i, (22) 
i=l 

M 

]" ---- - -  PD~~ ~ x  Y~' ~z= 1, M, IBm-- ~ I~, (23)  

T -F ]AAI~ + ]BAI2,! (24)  q = - -  PD~176 Ox 

where AI~ and AI 2 are the enthalpies of the first and second chemical reactions per unit 
mass of products A I and BI, respectively. Carrying out calculations analogous to (14)-(19), 
separately for each reaction, we find the composition in the reaction zone, 

X~ = X~ ~ Dho v#[,, ~, =_ vi ' ( 2 5 )  

k = l  i = t  

~=1 c~=1 

where Xi (~ and X(~ ) are the thermodynamic concentrations calculated for temperature T ~. 
The energy efficiency of the given chemical process when there are large spatial inhomogenei- 
ties is calculated by integrating Eqs. (22)-(24) (assuming that mi = ~ = 0) with allowance 
for the boundary conditions yr = yi r = 0 [Eqs. (25), (26)]: 

Tl 

S cpdT 
[ -- __ AI2YB, ] A = Ao 1 DI Doo r: 1)1 ~o ..(o) 

O~ S (r') -- I (T ~) L)~ I (T f) -- I (r') ; 
N 

h e r e  b 1 = I ]  (Di~ 

(27) 

We see that this expression differs from (21) by 
M 

and D~ = H (D~~ 

the presence of an additional correction , which is positive (negative) when D: < DI(D: > 
DI). This correction is for the change in the relations between the products fluxes of the 
first and second reactions, the removal of which is determined by the effective coefficients 
DI and D2- As a result,~the amount of chemical energy per molecule of useful product A~ 
changes (increases when D 2 > D l and decreases when D 2 < Dl). Even though Eq. (27) was ob- 
tained in the approximation of two independent reactions, when there are several reactions 
(which make the calculations much more complicated) the essence of this correction remains 
the same, namely, with a difference in the mass transfer coefficients a disproportional 
change occurs in the reagent fluxes. For example, in the thermal decomposition of carbon 
dioxide CO 2 the comparatively large transfer coefficient of atomic oxygen 0 (roughly 6-10 
times that of the other reagents) can result in its flux increasing 3-4 times in comparison 
with the CO flux and the energy expenditure for obtaining CO rises by 1-2 eV. 

In the calculations above we determined the minimum energy expenditure of the reaction 
zone temperature and the relations between the transfer coefficients. Let us now consider 
the problem of determining the energy input. 

In the given diffusion model it would be natural to define the energy input as the ratio 
of the total enthalpy flux from the reaction zone to the flux of the initial substance dif- 
fusing into the discharge region. It is necessary to specify here, however, what is meant 
by the flux of the initial substance and how to find it. If, as before, this flux is taken 
to mean the flux determined from the condition that the mean mass velocity be zero (all the 
mass transfer equations in this paper have been obtained from a system consisting of the 

N 

(N - l)-st Stefan-Maxwell equation [4, 6] with the auxiliary condition ~ j~ = 0), then, as 

can be easily shown, the energy input is equal to the energy expenditure to within a con- 
stant factor. This difficulty can nevertheless be obviated with comparative ease by formally 
dividing the initial substance into two components: i) the initial substance in the reac- 
tion zone and 2) the initial substance at the periphery. The transfer of substance will now 
be described by the (N + l)-st diffusion equation. This procedure makes it possible to iso- 
late two fluxes of the initial substance: i) the flux jin in the reaction zone and 2) the init 
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.out 
3ini t from the discharge region. This method can be used to determine both the energy input 

;in in out ~,.in 
S~q/Jini t and the degree of decomposition q~(Jinit - Jinit)/Jinit" Without given all the 

rather simple calculations here, we immediately write out energy input expressions which 
complement (3), (ii), (21), and (27), respectively: 

= I (T') -- I (T~), 

Tl 

; 
Tr 

(28) 

(29) 

f S ~  

I (TZ)-- I (Tr)-- (1-- D@ 2-) il cpdT 
T r 

D o o  
= 4 -  
D 

( 1 + xl~ (1 - f ) ) ,  
�9 V l 

(30) 

e [I(Tt)--I(Tr) /9~--D~176 rZ D~--~9o ] = i c;dT " AI2Y(e ~ 
D,. T r b i X 

,.~o) xb~ h)] • [mAoX~o+meoX~o+ ~ ( 1 - - f l  ) + - ~ - - . i  -- X 

I ?oo , r ' ( boo i ><[  D 1  [[7"tAoXA ~ , mBoXB,] Jr- mAo \l--m 
Vl 

~ v(o) ( Do ~ ~ v(o) 
"~-B, 1 - -  Z ~ c  ~ @ A A ,  mAoXrB. __  mBoXrBo) + +roB~ D1 ~q _ Duo / ~'1 

+ __~L (mBo- m,4o)X~o- A~~ ]-'. (31) 
L / 1  FI ] 

We note that in Eqs. (30) and (31) the values of the energy input, as a rule, are higher 
than those obtained from the modynamic calculation (28), owing to the higher degree of de- 
composition of the initial substances. Using Eqs. (29)-(31), we can plot the parametr:c 
curves of the energy expenditure versus the energy input (the temperatures in the reaction 
zone and at the periphery as well as the ratios between the transfer coefficients are the 
parameters). One such curve, plotted for the thermal decomposition of H2S is shown in Fig. 
i. We point out that even when allowance is made for the selectivity of the transfer ~ro- 
cesses, owing to the difference in the diffusion coefficients, an explanation still does not 
present itself for the experimental data (see Fig. i) obtained in a rapidly rotating plasma- 
chemical system. This is because when fairly large centrifugal forces act on a system in 
which the reagents have significantly different molecular masses, mass transfer becomes a 
drift process, thus creating conditions for an increase in the product flux relative tc the 
heat flux. If, moreover, a condensing product (sulfur S 2 in the case of the decomposition 
of H2S) is formed as a result of the reaction, the centrifugal forces can cause the preduct 
to be removed primarily in the condensed phase, thus lowering the energy expenditure for the 
chemical reaction as such. 

Let us now analyze the dependence of the minimum energy expenditure when the conditions 
imposed on the model under consideration are changed (the diffusive nature of the transfer 
processes, etc.). 

2. A nonzero product concentration on the periphery, virtually not changing the haat 
flux, causes the product flux to decrease and, therefore, the energy expenditure to ris~. 

3. If there is a nonuniform temperature distribution in the discharge zone, the i~i- 
tial substance will decompose in a certain temperature range. The energy efficiency and the 
energy input of the decomposition process in this are found in this case, on the whole, by 
averaging. Solution of this problem becomes complicated and for that reason we confine our 
discussion here to a qualitative explanation of the effect that the averaging procedure has 
on the dependence of the energy expenditure on the energy input. First we assume that one 
part of the initial substance decomposes at temperature T (I) while the other decomposes at 
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7CT~ 
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g (T% e ~T~21) E 0 E 

Fig, 2 - Fig. 3 

Fig. 2. OBCD represents the dependence of the energy expendi- 
ture on the energy input c, calculated for the diffusion 
model. 

Fig. 3. FCD represents the dependence of the energy expendi- 
ture A on the energy input, calculated for the diffusion model; 
OFCD is the curve delineating the region of possible values of 
the energy expenditure A av and the energy input say. 

T (2) (T (2) > T(1)). In this case the average energy input c av and degree of decomposition 

qaV are determined by 

. q a V  ~1 (T] ' ) )+ (1 -- ~ (T<~>)) ~q (Tr 

~lavq (T ~)) 
8av--8(TC~))--}-[8(TC2>)--s(T(1))l ~I(T~>) ' 

(32) 

(33) 

where c(T) and N(T) are the energy input and the degree of conversion, calculated for the 
model with a uniform distribution of the temperature T in the reaction zone. Graphically, 
Eqs. (32) and (33) correspond to the situation when (see Fig. 2) point (qavcav) lies on the 
segment [(q(TO)), e(T(b)); (~(T(~),e(T2))]. Taking this into account, we can easily show that 
curve OFCD now is the curve delineating the region of possible values of q av and c av. This 
circumstance causes a considerable change in the dependence of the energy expenditure on the 
energy input (see Fig. 3). Such discussions can also be carried out in the general case of 
averaging. The main conclusions stemming from the above are: a) the curve of A av as a 
function of c av will also lie above the curve OFCD, lying higher when the range of discharge 
zone temperatures is wider; b) the minimum energy expenditure is obtained with a uniform 
temperature distribution in the reaction zone (the minimum energy expenditure corresponds to 
point C in Figs. 2 and 3). The diffusion model thus does indeed describe the maximum effect 
of the selectivity of the transfer processes on the energetics of the chemical reactions in 
a thermal plasma. 

In summary, the main conclusion of this study is that the selectivity of the processes 
of heat and mass transfer, owing to the difference in the diffusion coefficients, results in 
an explicit dependence of the energy input and minimum energy expenditure on these coeffic- 
ients. The analytical expressions derived here make it possible to determine this dependence 
for a fairly broad class of chemical processes. 

NOTATION 

Here A is the energy expenditure; c is the energy input; X is the thermal conductivity 
coefficient; T is the temperature;l is the enthalpy; Dij are the binary diffusion coefficients; 
p is the gas density; q is the total enthalpy flux; Ji is the flux of the i-th substance; X i 
and Yi are the molar and mass concentrations of the i-th component; Cp is the heat capacity 
of the gas; and the ~ is the thermal diffusivity coefficient. 
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